Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 384
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38558348

RESUMO

Herein, novel catalysts of Fe-containing zeolite-A (Fe/zeolite-A) were synthesized by exchanging iron ions into zeolite-A framework, and short-chain organic acids (SCOAs) were employed as chelating agents. Reactive Brilliant Blue KN-R (KN-R) was used as a model pollutant to evaluate the performance of these catalysts based on the heterogeneous Fenton reaction. The results showed that Fe-OA/3A, which applied zeolite-3A as the supporter and oxalic as the chelating agent, presented the most prominent KN-R decolorization efficiency. Under the initial pH of 2.5, 0.4 mM KN-R could be totally decolorized within 20 min. However, the mineralization efficiency of KN-R was only 58.2%. Therefore, anthraquinone dyes were introduced to modify zeolite-3A. As a result, the mineralization efficiency of KN-R was elevated to 92.7% when using Alizarin Violet (AV) as the modifier. Moreover, the modified catalysts exhibited excellent stability, the KN-R decolorization efficiency could be maintained above 95.0% within 20 min after operating for nine cycles. The mechanism revealed that the Fe(II)/Fe(III) cycle was accelerated by AV-modified catalyst thus prompting the KN-R decolorization in Fenton-like system. These findings provide new insights for preparing catalysts with excellent activity and stability for dye wastewater treatment.

2.
Mar Pollut Bull ; 202: 116308, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38574503

RESUMO

The distribution of polycyclic aromatic hydrocarbons (PAHs) and halogenated PAHs (HPAHs) in surface soils from the petroleum industrial area of the Yellow River Delta (YRD) in China were investigated. The total concentrations of 16 PAHs ranged from 19.6 to 1560 ng/g, while 22 HPAHs ranged from 2.44 to 14.9 ng/g. Moreover, a high degree of spatial distribution heterogeneity was observed for both PAHs and HPAHs, which is likely attributed to the distinct industrial activities in studied area. The combustion of biomass and petroleum were identified as primary sources of soil PAHs and HPAHs in the YRD. Furthermore, benzo[b]fluoranthene, benzo[k]fluoranthene, and benzo[g,h,i]perylene exhibited high ecological risks (with risk quotients of 1.47, 1.44, and 1.02, respectively) in specific sites within the YRD. Considering the high toxicity of HPAHs and their potential joint environmental effects with PAHs, continuous attention should be directed towards the environmental risks associated with both PAHs and HPAHs.

3.
Pathol Res Pract ; 256: 155271, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38574630

RESUMO

BACKGROUND AND OBJECTIVE: The morbidity rate of non-small cell lung cancer (NSCLC) increases with age, highlighting that NSCLC is a serious threat to human health. The aim of this study was mainly to describe the role of exosomal miR-101-3p derived from bone marrow mesenchymal stem cells (BMSCs) in NSCLC. METHODS: A549 or NCI-H1703 cells (1×105/mouse) were injected into nude mice to establish an NSCLC animal model. RTqPCR, Western blotting and comet assays were used to assess the changes in gene expression, proteins and DNA damage repair. RESULTS: miR-101-3p and RAI2 were found to be expressed at low levels in NSCLC, while EZH2 was highly expressed. In terms of function, miR-101-3p downregulated EZH2. In addition, exosomal miR-101-3p derived from BMSCs promoted the expression of RAI2, inhibited DNA damage repair, and inhibited the activation of the PI3K/AKT/mTOR signaling pathway by inhibiting EZH2, thereby promoting autophagy and decreasing cell viability and finally enhancing the sensitivity of NSCLC to radiotherapy and inhibiting the malignant biological behavior of NSCLC. CONCLUSION: Exosomal miR-101-3p derived from BMSCs can inhibit DNA damage repair, promote autophagy, enhance the radiosensitivity of NSCLC, and inhibit the progression of NSCLC by inhibiting EZH2.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Exossomos , Neoplasias Pulmonares , Células-Tronco Mesenquimais , MicroRNAs , Humanos , Camundongos , Animais , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/radioterapia , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Neoplasias Pulmonares/patologia , MicroRNAs/metabolismo , Exossomos/genética , Exossomos/metabolismo , Camundongos Nus , Fosfatidilinositol 3-Quinases/metabolismo , Autofagia/genética , Células-Tronco Mesenquimais/metabolismo , Tolerância a Radiação , Dano ao DNA/genética , Proliferação de Células , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo
4.
Environ Int ; 186: 108609, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38579452

RESUMO

Recently, evidence of aromatic amine antioxidants (AAs) existence in the dust of the electronic waste (e-waste) dismantling area has been exposed. However, there are limited studies investigating occupational exposure and toxicity associated with AAs and their transformation products (p-phenylenediamines-quinones, i.e., PPD-Qs). In this study, 115 dust and 42 hand wipe samples collected from an e-waste recycling industrial park in central China were analyzed for 19 AAs and 6 PPD-Qs. Notably, the median concentration of ∑6PPD-Qs (1,110 ng/g and 1,970 ng/m2) was significantly higher (p < 0.05, Mann-Whitney U test) than that of ∑6PPDs (147 ng/g and 34.0 ng/m2) in dust and hand wipes. Among the detected analytes, 4-phenylaminodiphenylamine quinone (DPPD-Q) (median: 781 ng/g) and 1,4-Bis(2-naphthylamino) benzene quinone (DNPD-Q) (median: 156 ng/g), were particularly prominent, which were first detected in the e-waste dismantling area. Occupational exposure assessments and nuclear receptor interference ability, conducted through estimated daily intake (EDI) and molecular docking analysis, respectively, indicated significant occupational exposure to PPD-Qs and suggested prioritized Liver X receptors (LXRs) disruption potential of PPDs and PPD-Qs. The study provides the first evidence of considerable levels of AAs and PPD-Qs in the e-waste-related hand wipe samples and underscores the importance of assessing occupational exposure and associated toxicity effects.


Assuntos
Antioxidantes , Poeira , Resíduo Eletrônico , Exposição Ocupacional , Reciclagem , Exposição Ocupacional/análise , Humanos , Poeira/análise , China , Quinonas/análise , Aminas/análise
5.
Sci Total Environ ; 927: 172256, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38583613

RESUMO

The vertical distribution of 35 volatile organic compounds (VOCs) was investigated in soil columns from two obsolete industrial sites in Eastern China. The total concentrations of ΣVOCs in surface soils (0-20 cm) were 134-1664 ng g-1. Contamination of VOCs in surface soil exhibited remarkable variability, closely related to previous production activities at the sampling sites. Additionally, the concentrations of ΣVOCs varied with increasing soil depth from 0 to 10 m. Soils at depth of 2 m showed ΣVOCs concentrations of 127-47,389 ng g-1. Among the studied VOCs, xylene was the predominant contaminant in subsoils (2 m), with concentrations ranging from n.d. to 45,400 ng g-1. Chlorinated alkanes and olefins demonstrated a greater downward migration ability compared to monoaromatic hydrocarbons, likely due to their lower hydrophobicity. As a result, this vertical distribution of VOCs led to a high ecological risk in both the surface and deep soil. Notably, the risk quotient (RQ) of xylene in subsoil (2 m, RQ up to 319) was much higher than that in surface soil. Furthermore, distinct effects of VOCs on soil microbes were observed under aerobic and anaerobic conditions. Specifically, after the 30-d incubation of xylene-contaminated soil, Ilumatobacter was enriched under aerobic condition, whereas Anaerolineaceae was enriched under anaerobic condition. Moreover, xylene contamination significantly affected methylotrophy and methanol oxidation functions for aerobic soil (t-test, p < 0.05). However, aromatic compound degradation and ammonification were significantly enhanced by xylene in anaerobic soil (t-test, p < 0.05). These findings suggest that specific VOC compound has distinct microbial ecological effects under different oxygen content conditions in soil. Therefore, when conducting soil risk assessments of VOCs, it is crucial to consider their ecological effects at different soil depths.


Assuntos
Monitoramento Ambiental , Microbiologia do Solo , Poluentes do Solo , Solo , Compostos Orgânicos Voláteis , Compostos Orgânicos Voláteis/análise , Poluentes do Solo/análise , China , Anaerobiose , Solo/química , Aerobiose
6.
Environ Sci Technol ; 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38657129

RESUMO

The indoor environment is a typical source for organophosphorus flame retardants and plasticizers (OPFRs), yet the source characteristics of OPFRs in different microenvironments remain less clear. This study collected 109 indoor air samples and 34 paired indoor dust samples from 4 typical microenvironments within a university in Tianjin, China, including the dormitory, office, library, and information center. 29 target OPFRs were analyzed, and novel organophosphorus compounds (NOPs) were identified by fragment-based nontarget analysis. Target OPFRs exhibited the highest air and dust concentrations of 46.2-234 ng/m3 and 20.4-76.0 µg/g, respectively, in the information center, where chlorinated OPFRs were dominant. Triphenyl phosphate (TPHP) was the primary OPFR in office air, while tris(2-chloroethyl) phosphate dominated in the dust. TPHP was predominant in the library. Triethyl phosphate (TEP) was ubiquitous in the dormitory, and tris(2-butoxyethyl) phosphate was particularly high in the dust. 9 of 25 NOPs were identified for the first time, mainly from the information center and office, such as bis(chloropropyl) 2,3-dichloropropyl phosphate. Diphenyl phosphinic acid, two hydroxylated and methylated metabolites of tris(2,4-ditert-butylphenyl) phosphite (AO168), and a dimer phosphate were newly reported in the indoor environment. NOPs were widely associated with target OPFRs, and their human exposure risk and environmental behaviors warrant further study.

7.
Sci Total Environ ; 924: 171607, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38461993

RESUMO

Phthalates, classified as environmental endocrine disruptors, pose potential toxicity risks to human health. Metabolic dysfunction-associated fatty liver disease is one of the most widespread liver diseases globally. Compared to studies focusing on metabolic disorders in relation to pollutants exposure, the impact of individual factors such as fatty liver on the in vivo metabolism of pollutants is always overlooked. Therefore, this study measured concentrations and composition of phthalate monoesters (mPAEs) in human urine samples, particularly those from fatty liver patients. Furthermore, we induced fatty liver in male Wistar rats by formulating a high-fat diet for twelve weeks. After administering a single dose of DEHP at 500 mg/kg bw through gavage, we compared the levels of di-2-ethylhexyl phthalate (DEHP), its metabolites (mDEHPs) and three hepatic metabolic enzymes, namely cytochrome P450 enzymes (CYP450), UDP glucuronosyltransferase 1 (UGT1), and carboxylesterase 1 (CarE1), between the normal and fatty liver rat groups. Compared to healthy individuals (n = 75), fatty liver patients (n = 104) exhibited significantly lower urinary concentrations of ∑mPAEs (median: 106 vs. 166 ng/mL), but with a higher proportion of mono-2-ethylhexyl phthalate in ∑mDEHPs (25.7 % vs. 9.9 %) (p < 0.05). In the animal experiment, we found that fatty liver in rats prolonged the elimination half-life of DEHP (24.61 h vs. 18.89 h) and increased the contents of CYP450, CarE1, and UGT1, implying the common but differentiated metabolism of DEHP as excess lipid accumulation in liver cells. This study provides valuable information on how to distinguish populations in biomonitoring studies across a diverse population and in assigning exposure classifications of phthalates or similar chemicals in epidemiologic studies.


Assuntos
Dietilexilftalato , Poluentes Ambientais , Hepatopatia Gordurosa não Alcoólica , Ácidos Ftálicos , Humanos , Masculino , Ratos , Animais , Dietilexilftalato/metabolismo , Exposição Ambiental , Ratos Wistar , Ácidos Ftálicos/urina , Poluentes Ambientais/metabolismo , Biomarcadores
8.
Environ Sci Technol ; 58(13): 5832-5843, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38511412

RESUMO

Photosensitizer-mediated abiotic oxidation of Mn(II) can yield soluble reactive Mn(III) and solid Mn oxides. In eutrophic water systems, the ubiquitous algal extracellular organic matter (EOM) is a potential photosensitizer and may have a substantial impact on the oxidation of Mn(II). Herein, we focused on investigating the photochemical oxidation process from Mn(II) to solid Mn oxide driven by EOM. The results of irradiation experiments demonstrated that the generation of Mn(III) intermediate was crucial for the successful photo oxidization of Mn(II) to solid Mn oxide mediated by EOM. EOM can serve as both a photosensitizer and a ligand, facilitating the formation of the Mn(III)-EOM complex. The complex exhibited excellent efficiency in removing 17α-ethinylestradiol. Furthermore, the complex underwent decomposition as a result of reactions with reactive intermediates, forming a solid Mn oxide. The presence of nitrate can enhance the photochemical oxidation process, facilitating the conversion of Mn(II) to Mn(III) and then to solid Mn oxide. This study deepens our grasp of Mn(II) geochemical processes in eutrophic water and its impact on organic micropollutant fate.


Assuntos
Etinilestradiol , Óxidos , Óxidos/química , Fármacos Fotossensibilizantes , Compostos de Manganês/química , Oxirredução , Água/química
9.
J Hazard Mater ; 469: 133994, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38503210

RESUMO

The efficient remediation of the soil co-contaminated with heavy metals and polybrominated diphenyl ethers (PBDEs) from electronic disassembly zones is a new challenge. Here, we screened a fungus of F. solani (F.s) can immobilize Cd and remove PBDEs. wIt combined with tourmaline enhances the remediation of co- pollutants in the soil. Furthermore, the environment risks of the enhanced technology were assessed through the amount of Cd/BDE-153 in Amaranthus tricolor L. (amaranth) migrated from soil, as well as the changes of soil microorganism communities and enzyme activities. The results showed the combined treatment of tourmaline and F.s made the removal percentage of BDE-153 in rhizosphere soil co-contaminated with BDE-153 and Cd reached 46.5%. And the weak acid extractable Cd in rhizosphere soil decreased by 33.7% compared to control group. In addition, the combined remediation technology resulted in a 32.5% (22.8%), 45.5% (37.2%), and 50.7% (38.1%) decrease in BDE-153 (Cd) content in the roots, stems, and leaves of amaranth, respectively. Tourmaline combined with F.s can significantly increase soil microorganism diversity, soil dehydrogenase and urease activities, further improving the remediation rate of Cd and BDE-153co-pollutants in soil and the biomass of amaranth. This study provides the remediation technology of soil co-contaminated with heavy metal and PBDEs and ensure the maintenance of food security.


Assuntos
Amaranthus , Poluentes Ambientais , Metais Pesados , Bifenil Polibromatos , Silicatos , Poluentes do Solo , Solo , Cádmio , Biodegradação Ambiental , Éteres Difenil Halogenados/análise , Poluentes do Solo/análise , Metais Pesados/análise
10.
Environ Sci Technol ; 58(12): 5567-5577, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38488517

RESUMO

The development of efficient defluorination technology is an important issue because the kind of emerging pollutant of hexafluoropropylene oxide dimer acid (GenX) as an alternative to perfluorooctanoic acid (PFOA) has the higher environmental risks. In the UV/bisulfite system, we first developed a hydrophobic confined α-Fe2O3 nanoparticle layer rich in oxygen vacancies, which accelerated the enrichment of HSO3- and GenX on the surface and pores through electrostatic attraction and hydrophobic interaction, retaining more hydrated electrons (eaq-) and rapidly destroying GenX under UV excitation. Especially, under anaerobic and aerobic conditions, the degradation percentage of GenX obtain nearly 100%, defluorination of GenX to 88 and 57% respectively. It was amazed to find that the three parallel H/F exchange pathways triggered by the rapid reactions of eaq- and GenX, which were unique to anaerobic conditions, improved the efficiency of fluoride removal and weaken the interference of dissolved oxygen and H+. Therefore, this study provided an available material and mechanism for sustainable fluoride removal from wastewater in aerobic and anaerobic conditions.


Assuntos
Poluentes Ambientais , Fluorocarbonos , Poluentes Químicos da Água , Elétrons , Fluoretos , Caprilatos/química
11.
Eco Environ Health ; 3(1): 107-115, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38445214

RESUMO

Chemical exposure and local hypoxia caused by mask-wearing may result in skin physiology changes. The effects of methylparaben (MeP), a commonly used preservative in personal care products, and hypoxia on skin health were investigated by HaCaT cell and ICR mouse experiments. MeP exposure resulted in lipid peroxidation and interfered with cellular glutathione metabolism, while hypoxia treatment disturbed phenylalanine, tyrosine, and tryptophan biosynthesis pathways and energy metabolism to respond to oxidative stress. A hypoxic environment increased the perturbation of MeP on the purine metabolism in HaCaT cells, resulting in increased expression of proinflammatory cytokines. The synergistic effects were further validated in a mouse model with MeP dermal exposure and "mask-wearing" treatment. CAT, PPARG, and MMP2 were identified as possible key gene targets associated with skin health risks posed by MeP and hypoxia. Network toxicity analysis suggested a synergistic effect, indicating the risk of skin inflammation and skin barrier aging.

12.
Huan Jing Ke Xue ; 45(2): 940-951, 2024 Feb 08.
Artigo em Chinês | MEDLINE | ID: mdl-38471932

RESUMO

Saline-alkali land, as one of the farmland problems that seriously threatens grain yield in the 21st century, is widely distributed and has great potential for development. Biochar is a relatively efficient novel soil amendment, which can play an important role in alleviating the soil acid-base barrier, soil pollution control, carbon sequestration, and fertilizer slow release and has a great prospect in promoting sustainable agricultural development. In recent years, the research and application of biochar to improve saline-alkali soil have attracted much attention. However, due to the complexity and heterogeneity of the structural components of biochar, the improvement effect of biochar on saline-alkali soil is highly uncertain, and there is also a lack of systematic summary and in-depth discussion of the key mechanisms, which limits the further popularization and application of biochar technology in the improvement of saline-alkali soil. This study comprehensively analyzed the effects of biochar on physicochemical properties, nutrient availability, and biological characteristics of saline-alkali soil; summarized the improvement effects of biochar and modified biochar on saline-alkali soil and their effects on quality and efficiency; and elucidated the possible mechanism of biochar in the improvement of saline-alkali soil. The future research prospect of biochar was discussed in order to provide reference for further research and development of green, efficient, and accurate improvement technology of biochar in saline-alkali soil and its popularization and application.


Assuntos
Álcalis , Solo , Solo/química , Carvão Vegetal , Agricultura
13.
Environ Sci Technol ; 58(8): 3908-3918, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38329000

RESUMO

The heterogeneous photodegradation behavior of liquid crystal monomers (LCMs) in standard dust (standard reference material, SRM 2583) and environmental dust was investigated. The measured photodegradation ratios for 23 LCMs in SRM and environmental dust in 12 h were 11.1 ± 1.8 to 23.2 ± 1.1% and 8.7 ± 0.5 to 24.0 ± 2.8%, respectively. The degradation behavior of different LCM compounds varied depending on their structural properties. A quantitative structure-activity relationship model for predicting the degradation ratio of LCMs in SRM dust was established, which revealed that the molecular descriptors related to molecular polarizability, electronegativity, and molecular mass were closely associated with LCMs' photodegradation. The photodegradation products of the LCM compound 4'-propoxy-4-biphenylcarbonitrile (PBIPHCN) in dust, including •OH oxidation, C-O bond cleavage, and ring-opening products, were identified by nontarget analysis, and the corresponding degradation pathways were suggested. Some of the identified products, such as 4'-hydroxyethoxy-4-biphenylcarbonitrile, showed predicted toxicity (with an oral rat lethal dose of 50%) comparable to that of PBIPHCN. The half-lives of the studied LCMs in SRM dust were estimated at 32.2-82.5 h by fitting an exponential decay curve to the observed photodegradation data. The photodegradation mechanisms of LCMs in dust were revealed for the first time, enhancing the understanding of LCMs' environmental behavior and risks.


Assuntos
Poeira , Cristais Líquidos , Animais , Ratos , Relação Quantitativa Estrutura-Atividade , Fotólise
14.
J Hazard Mater ; 468: 133835, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38394895

RESUMO

While N, N'-substituted p-phenylenediamines (PPDs) and their quinone derivatives (PPDQs) have been widely detected in the environment, there is currently limited data on their occurrence in humans. In this study, we conducted the first serum analysis of two PPDs and PPDQs in the healthy and secondary nonalcoholic fatty liver disease (S-NAFLD) cohorts in South China. The concentrations of four oxidative stress biomarkers (OSBs), namely, 8-iso-prostaglandin F2α (8-PGF2α), 11ß-prostaglandin F2α (11-PGF2α), 15(R)-prostaglandin F2α (15-PGF2α), and 8-hydroxy-2'-deoxyguanosine in serum samples were also measured. Results showed that N-(1,3-dimethybutyl)-N'-phenyl-p-phenylenediamine (6PPD) quinone was the predominant target analytes both in the healthy and S-NAFLD cohorts, with the median concentrations of 0.13 and 0.20 ng/mL, respectively. Significant (p < 0.05) and positive correlations were found between 6PPD concentration and 8-PGF2α, 11-PGF2α, and 15-PGF2α in both the healthy and S-NAFLD cohorts, indicating that 6PPD may be associated with lipid oxidative damage. In addition, concentrations of 6PPD in serum were associated significantly linked with total bilirubin (ß = 0.180 µmol/L, 95%CI: 0.036-0.396) and direct bilirubin (DBIL, ß = 0.321 µmol/L, 95%CI: 0.035-0.677) related to hepatotoxicity. Furthermore, 8-PGF2α, 11-PGF2α, and 15-PGF2α mediated 17.1%, 24.5%, and 16.6% of 6PPD-associated DBIL elevations, respectively. Conclusively, this study provides novel insights into human exposure to and hepatotoxicity assessment of PPDs and PPDQs.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Hepatopatia Gordurosa não Alcoólica , Humanos , Quinonas/toxicidade , Estresse Oxidativo , 8-Hidroxi-2'-Desoxiguanosina , Bilirrubina , Prostaglandinas , Fenilenodiaminas/toxicidade
15.
Sci Total Environ ; 921: 171090, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38387585

RESUMO

Since the COVID-19 pandemic, face masks have been used popularly and disposed of improperly, leading to the generation of a large amount of microplastics. The objective of this review is to provide a comprehensive insight into the characteristics of mask-derived microplastics, the influential factors of microplastics release, and the potential risks of these microplastics to the environment and organisms. Mask-derived microplastics were predominantly transparent fibers, with a length of <1 mm. The release of microplastics from masks is mainly influenced by mask types, use habits, and weathering conditions. Under the same conditions, surgical masks release more microplastics than other types of masks. Long-term wearing of masks and the disinfection for reuse can promote the release of microplastics. Environmental media, UV irradiation, temperature, pH value, and mechanical shear can also influence the microplastics release. The risks of mask-derived microplastics to human health via inhalation cannot be neglected. Future studies should pay more attention to the release of microplastics from the masks with alternative materials and under more weathering conditions.


Assuntos
COVID-19 , Máscaras , Humanos , Microplásticos , Pandemias , Plásticos
16.
J Hazard Mater ; 466: 133604, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38280326

RESUMO

The extensive use of bio-based plastics has led to their widespread distribution in the environment. However, their long-term ecological impact on aquatic animals is not well understood. In this study, adult zebrafish (Danio rerio) were exposed to 1000 items·L-1 of either polylactic acid (PLA) or polyethylene terephthalate (PET) microplastics (MPs), for 90 days. PLA is a typical bio-based plastic, while PET is a typical petroleum-derived plastic. The abundances of PLA and PET MPs in fish intestines were 981 ± 66 and 671 ± 151 items per fish, respectively, indicating a greater amount of PLA MP residues than PET MPs. However, the inhibitory effect of PET on fish weight was 1.8 times higher than that of PLA, suggesting energy compensation in PLA-treated zebrafish. Proliferation of Lactobacillus was observed in the fish intestines of the PLA group, indicating increased utilization capacity of intestinal flora for lactic acid production during PLA degradation. Metabolomics showed that the tricarboxylic acid pathway was up-regulated in the PLA group compared with that in the PET group, providing evidence of energy compensation. However, more ingested PLA MPs caused more significant histological damage to fish intestines than PET MPs. Therefore, the ecological risks of bio-based plastics still require attention.


Assuntos
Perciformes , Poluentes Químicos da Água , Animais , Plásticos/toxicidade , Peixe-Zebra , Poliésteres/toxicidade , Microplásticos/toxicidade , Polietilenotereftalatos , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/análise
17.
Sci Total Environ ; 913: 169805, 2024 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-38181956

RESUMO

The ecological risks posed by widespread organophosphorus pesticide (OPs) pollution in the surface waters of China remain unclear. In this study, species sensitivity distribution (SSD) parametric statistical approaches were coupled with fully acute and chronic toxicity data to fit the sensitivity distributions of different aquatic species to five typical OPs: dimethoate, malathion, parathion-methyl, trichlorfon, and dichlorvos. Crustaceans exhibit the highest sensitivity to OPs, whereas algae are the least sensitive. The acute hazardous concentrations that affected 5 % of the species (HC5) were 0.112, 0.001, 0.001, 0.001, and 0.001 mg/L for dimethoate, malathion, parathion-methyl, trichlorfon, and dichlorvos, respectively, whereas their chronic HC5 values were 0.004, 0.004, 0.053, 0.001, and 0.0005 mg/L, respectively. Hence, dichlorvos is highly toxic and poses greater risk to non-target aquatic species. The evaluation data revealed varying geographical distribution characteristics of the ecological risks from OPs in 15 freshwater aquatic systems across different regions of China. Dichlorvos posed the highest risk in the basins of Zhejiang and Guangdong Provinces, with the highest chronic Risk Quotient (RQ) and Hazard Index (HI) at 9.34 and 9.92, respectively. This is much higher than what was collected and evaluated for foreign rivers (the highest chronic RQ and HI in foreign rivers were 1.65 and 2.24, respectively). Thus, dichlorvos in the surface waters of China poses a substantial ecological risk to aquatic organisms, and may endanger human health.


Assuntos
Metil Paration , Praguicidas , Poluentes Químicos da Água , Humanos , Praguicidas/toxicidade , Praguicidas/análise , Compostos Organofosforados/toxicidade , Diclorvós , Malation , Dimetoato , Água , Triclorfon , Organismos Aquáticos , China , Medição de Risco , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/análise
18.
J Hazard Mater ; 466: 133560, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38246054

RESUMO

Global electronic waste (e-waste) generation continues to grow. The various pollutants released during precarious e-waste disposal activities can contribute to human oxidative stress. This study encompassed 129 individuals residing near e-waste dismantling sites in China, with elevated urinary concentrations of e-waste-related pollutants including heavy metals, polycyclic aromatic hydrocarbons (PAHs), organophosphorus flame retardants (OPFRs), bisphenols (BPs), and phthalate esters (PAEs). Utilizing an explainable machine learning framework, the study quantified the co-exposure effects of these pollutants, finding that approximately 23% and 18% of the variance in oxidative DNA damage and lipid peroxidation, respectively, was attributable to these substances. Heavy metals emerged as the most critical factor in inducing oxidative stress, followed by PAHs and PAEs for oxidative DNA damage, and BPs, OPFRs, and PAEs for lipid peroxidation. The interactions between different pollutant classes were found to be weak, attributable to their disparate biological pathways. In contrast, the interactions among congeneric pollutants were strong, stemming from their shared pathways and resultant synergistic or additive effects on oxidative stress. An intelligent analysis system for e-waste pollutants was also developed, which enables more efficient processing of large-scale and dynamic datasets in evolving environments. This study offered an enticing peek into the intricacies of co-exposure effect of e-waste pollutants.


Assuntos
Resíduo Eletrônico , Poluentes Ambientais , Retardadores de Chama , Metais Pesados , Hidrocarbonetos Policíclicos Aromáticos , Eliminação de Resíduos , Humanos , Poluentes Ambientais/toxicidade , Poluentes Ambientais/análise , Resíduo Eletrônico/análise , Metais Pesados/análise , Estresse Oxidativo , Hidrocarbonetos Policíclicos Aromáticos/análise , China
19.
Environ Sci Technol ; 58(5): 2446-2457, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38178542

RESUMO

The 6:2 fluorotelomer sulfonamide (6:2 FTSAm)-based compounds signify a prominent group of per- and polyfluoroalkyl substances (PFAS) widely used in contemporary aqueous film-forming foam (AFFF) formulations. Despite their widespread presence, the biotransformation behavior of these compounds in wastewater treatment plants remains uncertain. This study investigated the biotransformation of 6:2 FTSAm-based amine oxide (6:2 FTNO), alkylbetaine (6:2 FTAB), and 6:2 fluorotelomer sulfonic acid (6:2 FTSA) in aerobic sludge over a 100-day incubation period. The biotransformation of 6:2 fluorotelomer sulfonamide alkylamine (6:2 FTAA), a primary intermediate product of 6:2 FTNO, was indirectly assessed. Their stability was ranked based on the estimated half-lives (t1/2): 6:2 FTAB (no obvious products were detected) ≫ 6:2 FTSA (t1/2 ≈28.8 days) > 6:2 FTAA (t1/2 ≈11.5 days) > 6:2 FTNO (t1/2 ≈1.2 days). Seven transformation products of 6:2 FTSA and 15 products of 6:2 FTNO were identified through nontarget and suspect screening using high-resolution mass spectrometry. The transformation pathways of 6:2 FTNO and 6:2 FTSA in aerobic sludge were proposed. Interestingly, 6:2 FTSAm was hardly hydrolyzed to 6:2 FTSA and further biotransformed to perfluoroalkyl carboxylic acids (PFCAs). Furthermore, the novel pathways for the generation of perfluoroheptanoic acid (PFHpA) from 6:2 FTSA were revealed.


Assuntos
Fluorocarbonos , Poluentes Químicos da Água , Esgotos/química , Óxidos , Aminas , Fluorocarbonos/análise , Biotransformação , Sulfonamidas/metabolismo , Poluentes Químicos da Água/análise
20.
Environ Toxicol Chem ; 43(1): 170-181, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37861387

RESUMO

High levels of 6:2 chlorinated polyfluorinated ether sulfonate (F-53B), which is a substitute for perfluorooctane sulfonate (PFOS), are detected in various environmental matrices, wildlife, and humans. Chlorinated polyfluorinated ether sulfonate has received increased attention due to its potential risk to ecosystems. However, its toxicity in the soil organisms remains unclear. In the present study, a comparative investigation was conducted on the toxicities of 6:2 Chlorinated polyfluorinated ether sulfonate (F-53B) and PFOS to the earthworm Eisenia. fetida. F-53B was significantly more acutely toxic to earthworms than PFOS, with median lethal concentrations of 1.43 and 1.83 mmol/kg dry soil (~816 and 984 mg/kg dry soil), respectively. Although both F-53B and PFOS, at 0.4 mmol/kg dry soil (=228 and 215 mg/kg dry soil) caused oxidative stress in earthworms, as evidenced by increased superoxide dismutase, peroxidase, and catalase activities as well as malondialdehyde level, the stress caused by F-53B was higher than that caused by PFOS. In transcriptomic and metabolomic studies, negative effects of PFOS and F-53B were observed on several metabolic processes in earthworms, including protein digestion and amino acid absorption, lipid metabolism, and the immune response. Compared with PFOS, F-53B exhibited a weaker disruption of lipid metabolism, comparable potency for toxicity to the immune response, and a stronger potency in extracellular matrix destruction along with apoptosis and ferroptosis induction. Hence, our data suggest that F-53B is more toxic than PFOS to earthworms. The findings provide some new insights into the potential toxicity of F-53B to soil organisms. Environ Toxicol Chem 2024;43:170-181. © 2023 SETAC.


Assuntos
Ácidos Alcanossulfônicos , Fluorocarbonos , Oligoquetos , Humanos , Animais , Éter/metabolismo , Ecossistema , Peixe-Zebra/metabolismo , Ácidos Alcanossulfônicos/toxicidade , Ácidos Alcanossulfônicos/metabolismo , Alcanossulfonatos/metabolismo , Alcanossulfonatos/toxicidade , Fluorocarbonos/metabolismo , Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...